
Viceroy Documentation
Release 0.1

Jonas Obrist

June 16, 2016

Contents

1 What is Viceroy 3

2 Contents 5
2.1 Installation . 5
2.2 Quickstart . 5
2.3 Indices and tables . 7

i

ii

Viceroy Documentation, Release 0.1

Warning: This project is still in an early stage and quite a few things are not supported yet. Feel free to give it a
try, but don’t expect this to be production ready yet.
I will likely change 100% of the APIs in new releases until I hit 1.0.

Contents 1

Viceroy Documentation, Release 0.1

2 Contents

CHAPTER 1

What is Viceroy

Viceroy is a Python library that allows you to run Javascript tests in a browser, using Selenium, and reports them just
like normal Python unit tests.

The main goal is to streamline continuous integration of Python web projects that would like to test their Javascript.

For now, QUnit and Jasmine are supported, but you can add support for your preferred testing library if you want to.

As for Python frameworks, Flask and Django are supported out of the box, but again you may feel free to add support
for the framework of your choice.

Note that how to extend Viceroy is not yet documented, as the API is not finalized yet.

3

Viceroy Documentation, Release 0.1

4 Chapter 1. What is Viceroy

CHAPTER 2

Contents

2.1 Installation

2.1.1 Requirements

Python

Viceroy requires Python 3.3 or higher.

Dependencies

You need to install the selenium Python package.

2.1.2 Installation

Simply pip install viceroy in your virtualenv, assuming you have the dependencies of selenium installed and
a C compiler available.

2.2 Quickstart

Viceroy expects you to have a view in your app that loads your Javascript testing framework, the Viceroy Javascript
library and your testing code. For both Django and Flask it will provide a flag for when your code is in Viceroy testing,
so you can load those files conditionally if you wish to re-use a template used in your app.

No matter what you’re using on the Javascript or Python side, your main entry point into Viceroy is
viceroy.api.build_test_case(), which will build a test case class for you (and return it). It takes the
following arguments:

• class_name: The name of the class you want to build.

• source_file: Full path to the source file.

• scanner_class: Class that scans your source_file for test methods, this will depend on your Javascript
framework of choice.

• base_class: Base class for the test case, this will depend on your Python framework of choice.

• All other keyword arguments will be set as class attributes on the class being built. A common keyword argument
is viceroy_url which is the URL at which your test view is served.

5

https://pypi.python.org/pypi/selenium
https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi/selenium

Viceroy Documentation, Release 0.1

2.2.1 Django

Viceroy will set settings.VICEROY_TESTING to True when running Viceroy tests.

Setup

Include viceroy.contrib.django.urls in your urls. This will allow you to serve the Viceroy Javascript
libraries from that URL. This view will only work if settings.VICEROY_TESTING is True and otherwise will
always return a 404 response.

You may optionally install the viceroy.contrib.django.context_processor.viceroy context pro-
cessor, which will set the template context variable VICEROY_TESTING to True if the template is being rendered
in a Viceroy test.

QUnit

To use QUnit, build a view and template that load the following Javascript files. Order matters:

• QUnit itself.

• viceroy.js which can be served from the urls you included above.

• qunit-bridge.js which can also be served from the urls you included above.

• Your test file.

Assuming your test file is located at /path/to/tests.js on your filesystem, and the url to the view that loads
the tests at /test-url/ you would build the test class as follows:

from viceroy.api import build_test_case
from viceroy.contrib.django import ViceroyDjangoTestCase
from viceroy.contrib.qunit import QUnitScanner

MyTestCase = build_test_case(
'MyTestCase',
'/path/to/tests.js',
QUnitScanner,
ViceroyDjangoTestCase,
viceroy_url='/test-url/'

)

Jasmine

Jasmine works mostly the same as QUnit, however you need to load the following Javascript files, again order matters:

• Jasmine itself.

• viceroy.js from the included urls.

• jasmine-bridge.js from the included urls.

• Your test file.

Build the test case as described in QUnit, but replace the QUnitScanner with JasmineScanner, which you can
import from viceroy.contrib.jasmine.

6 Chapter 2. Contents

Viceroy Documentation, Release 0.1

2.2.2 Flask

With Flask, you’re responsible to serve the Viceroy Javascript files yourself. For your convenience, you may use
viceroy.constants.VICEROY_STATIC_ROOT which is the path to the directory holding viceroy.js,
qunit-bridge.js and jasmine-bridge.js.

VICEROY_TESTING in your app.config will be set to True during Viceroy testing.

Testing in Flask works pretty much the same as Django, but substitute the ViceroyDjangoTestCase with
ViceroyFlaskTestCase and make sure to pass your Flask app as the viceroy_flask_app keyword ar-
gument to build_test_case.

Configuration

Besides the required viceroy_flask_app extra keyword argument to build_test_case there are the follow-
ing optional configuration values:

• viceroy_flask_port: Port to use, default 5000.

• viceroy_flask_silent: Whether to hide the Werkzeug log, default True.

2.3 Indices and tables

• genindex

• modindex

• search

2.3. Indices and tables 7

	What is Viceroy
	Contents
	Installation
	Quickstart
	Indices and tables

